BACKGROUND

Obesity is a chronic disease that can increase the risk of serious health complications, including type 2 diabetes (T2DM), heart disease, and stroke¹.

GLP-1 analogs, such as semaglutide (Wegovy®) and liraglutide (Saxenda®), have recently been developed as effective treatments for weight loss. These drugs mimic the activity of GLP-1, a naturally produced incretin hormone that is released by intestinal cells after a meal. GLP-1 acts on various tissues, including the gastrointestinal tract, pancreas, and central nervous system to slow gastric emptying, promote a sense of fullness, reduce appetite, and regulate blood sugar^{2.}

Ecnoglutide (XW003) is a novel, long-acting GLP-1 analog being developed for the treatment of obesity and T2DM.

METHODS

We performed a randomized, open-label, active controlled, Phase 2 study to evaluate the effects of ecnoglutide once weekly versus liraglutide once daily on body weight in adult participants with obesity (BMI \geq 30.0 to \leq 40.0 kg/m²). The trial was conducted at nine sites in Australia and New Zealand. Eligible male and female participants were aged 18 to 70 years, inclusive, with HbA1c <6.5% and weight stable for at least 3 months.

Participants were randomized (1:1:1:1) to receive target doses of 1.2, 1.8, or 2.4 mg ecnoglutide as once weekly subcutaneous (SC) injections or liraglutide (Saxenda®) at 3.0 mg as once daily SC injections for 26 weeks, including a dose titration period.

The primary endpoint was percent change in body weight at Week 26. Secondary endpoints included proportion of participants reaching pre-defined weight loss targets, as well as changes in waist and hip circumference, BMI, and lipid profiles.

Study design

	Ecnoglutide	0.2 mg 0.4 mg 0.8 mg		1.2 mg	• • • •			
Adult participants	Ecnoglutide	0.2 mg	0.4 r	ng	0.8 mg	1.2 mg	1.8 mg	•••••
with obesity N=206	Ecnoglutide	0.2 mg	0.4 r	ng	0.8 mg	1.6 mg	2.4 mg	• • • • •
	Liraglutide	0.6 mg	1.2 mg	1.8 mg	2.4 mg		3.0 mg	•••••
Study number S			4-14 v Dose ti	veeks tration		≥12 weeks Target dose	5 weeks Follow up	

Participants receiving 2.4 mg ecnoglutide showed significantly greater body weight reduction compared to liraglutide at 26 weeks (ITT population; least squares mean difference -5.9, 95% CI -10.4, -1.5; P<0.001).</p>

An open-label, active-controlled phase 2 evaluation of novel GLP-1 analog ecnoglutide (XW003) in adults with obesity

Zhiyi Zhu¹, Yao Li¹, Qing Zheng¹, Eric Adegbite², Stephen Ross², Libnir Telusca², Catherine L. Jones², Martijn Fenaux², Susan Xu², Mohammed K. Junaidi² ¹Hangzhou Sciwind Biosciences, Hangzhou, China ²Sciwind Biosciences, San Ramon, USA

The most common reason for treatment discontinuation was AEs; 18.7% for ecnoglutide and 13.7% for liraglutide.

Demographics and baseline characteristics

			Liraglutide				
Characteristic*		1.2 mg (N=53)	1.8 mg (N=50)	2.4 mg (N=52)	Overall (N=155)	(once daily) 3 mg (N=51)	
Age (years)		48.5 (10.90)	47.6 (11.04)	49.8 (11.84)	48.7 (11.23)	47.3 (12.62)	
Sex, n (%)	Female	39 (73.6%)	39 (78.0%)	39 (75.0%)	117 (75.5%)	38 (74.5%)	
	Male	14 (26.4%)	11 (22.0%)	13 (25.0%)	38 (24.5%)	13 (25.5%)	
Race, n (%)	Asian	1 (1.9%)	2 (4.0%)	1 (1.9%)	4 (2.6%)	0	
	Black or African American	0	1 (2.0%)	0	1 (0.6%)	0	
	Native Hawaiian or Pacific Islander	8 (15.1%)	5 (10.0%)	3 (5.8%)	16 (10.3%)	6 (11.8%)	
	White	41 (77.4%)	38 (76.0%)	43 (82.7%)	122 (78.7%)	39 (76.5%)	
	Other	1 (1.9%)	3 (6.0%)	3 (5.8%)	7 (4.5%)	3 (5.9%)	
	Multiple	2 (3.8%)	1 (2.0%)	2 (3.8%)	5 (3.2%)	3 (5.9%)	
Weight (kg)		98.52 (11.921)	102.23 (12.873)	98.62 (13.719)	99.75 (12.884)	103.45 (15.180)	
Height (cm)		167.15 (8.920)	169.44 (8.201)	167.00 (8.477)	167.84 (8.561)	171.10 (11.111)	
BMI (kg/m ²)		35.18 (2.649)	35.52 (2.888)	35.24 (2.761)	35.31 (2.751)	35.22 (2.802)	

*Mean (SD) unless otherwise noted

Body weight change from baseline

Lipid profile change from baseline

Summary of adverse events Most AEs were GI-related, mild to moderate in severity, and occurred during dose-escalation. Two SAEs of acute cholecystitis were reported, one for 1.2 mg ecnoglutide and one for liraglutide.

		Ecnoglutide (Liraglutide			
AEs, n (%) m*	1.2 mg (N=53)	1.8 mg (N=50)	2.4 mg (N=52)	Overall (N=155)	(once daily) 3 mg (N=51)	Overall (N=206)
One TEAE	49 (92.5%) 389	47 (94.0%) 414	49 (94.2%) 354	145 (93.5%)1157	50 (98.0%) 360	195 (94.7%)1517
One ≥ Grade 3 TEAE	2 (3.8%) 3	0	1 (1.9%) 2	3 (1.9%) 5	4 (7.8%) 5	7 (3.4%) 10
One ≤ Grade 2 TEAE	49 (92.5%) 386	47 (94.0%) 414	49 (94.2%) 352	145 (93.5%)1152	50 (98.0%) 355	195 (94.7%)1507
Study Drug Related TEAE	43 (81.1%) 233	44 (88.0%) 270	44 (84.6%) 222	131 (84.5%) 725	41 (80.4%) 168	172 (83.5%) 893
Injection Site Reaction	8 (15.1%) 18	10 (20.0%) 13	9 (17.3%) 16	27 (17.4%) 47	17 (33.3%) 23	44 (21.4%) 70
Serious TEAE**	2 (3.8%) 2	0	0	2 (1.3%) 2	3 (5.9%) 3	5 (2.4%) 5
Gastrointestinal Disorder	40 (75.5%) 174	42 (84.0%) 208	45 (86.5%) 202	127 (81.9%) 584	41 (80.4%) 137	168 (81.6%) 721
TEAE Leading to Drug Discontinuation	7 (13.2%) 8	15 (30.0%) 28	7 (13.5%) 10	29 (18.7%) 46	7 (13.7%)12	36 (17.5%) 58
TEAE Leading to Study Discontinuation	5 (9.4%) 7	12 (24.0%) 25	6 (11.5%) 8	23 (14.8%) 40	5 (9.8%) 9	28 (13.6%) 49
TEAE Leading to Death	0	0	0	0	0	0

Change from baseline at Week 26. Least squares mean and SE is shown for BMI, waist and hip circumference

*n (%), number and % of participants experiencing an AE ; m, number of incidents of an AE

* Two events of acute cholecystitis were probably related to study drug; other SAEs not related to study drug

preferred term

		Ecnoglutide (Liraglutide			
TEAE by preferred term, n (%) m*	1.2 mg (N=53)	1.8 mg (N=50)	2.4 mg (N=52)	Overall (N=155)	(once daily) 3 mg (N=51)	Overall (N=206)
Nausea	21 (39.6%) 47	25 (50.0%) 47	32 (61.5%) 88	78 (50.3%) 182	27 (52.9%) 41	105 (51.0%) 223
Headache	18 (34.0%) 41	23 (46.0%) 49	14 (26.9%) 20	55 (35.5%) 110	22 (43.1%) 36	77 (37.4%) 146
COVID-19	15 (28.3%) 15	17 (34.0%) 17	15 (28.8%) 15	47 (30.3%) 47	21 (41.2%) 22	68 (33.0%) 69
Diarrhea	18 (34.0%) 32	20 (40.0%) 46	9 (17.3%) 18	47 (30.3%) 96	18 (35.3%) 26	65 (31.6%) 122
Constipation	15 (28.3%) 31	12 (24.0%) 27	12 (23.1%) 16	39 (25.2%) 74	12 (23.5%) 19	51 (24.8%) 93
Gastroesophageal reflux disease	10 (18.9%) 13	14 (28.0%) 21	10 (19.2%) 11	34 (21.9%) 45	9 (17.6%) 10	43 (20.9%) 55
Vomiting	13 (24.5%) 26	11 (22.0%) 17	11 (21.2%) 31	35 (22.6%) 74	6 (11.8%) 9	41 (19.9%) 83
Injection site bruising	5 (9.4%) 6	8 (16.0%) 11	5 (9.6%) 6	18 (11.6%) 23	14 (27.5%) 18	32 (15.5%) 41
Upper respiratory tract infection	13 (24.5%) 16	3 (6.0%) 3	5 (9.6%) 6	21 (13.5%) 25	6 (11.8%) 7	27 (13.1%) 32
Abdominal pain	5 (9.4%) 5	2 (4.0%) 3	7 (13.5%) 10	14 (9.0%) 18	6 (11.8%) 9	20 (9.7%) 27
Dyspepsia	5 (9.4%) 5	5 (10.0%) 8	5 (9.6%) 9	15 (9.7%) 22	4 (7.8%) 8	19 (9.2%) 30
Fatigue	4 (7.5%) 8	7 (14.0%) 7	6 (11.5%) 6	17 (11.0%) 21	2 (3.9%) 2	19 (9.2%) 23
Dizziness	6 (11.3%) 8	2 (4.0%) 2	4 (7.7%) 5	12 (7.7%) 15	2 (3.9%) 7	14 (6.8%) 22
Arthralgia	2 (3.8%) 2	5 (10.0%) 7	2 (3.8%) 2	9 (5.8%) 11	5 (9.8%) 7	14 (6.8%) 18
Back pain	2 (3.8%) 2	3 (6.0%) 4	1 (1.9%) 1	6 (3.9%) 7	7 (13.7%) 9	13 (6.3%) 16
Gastroenteritis	3 (5.7%) 3	3 (6.0%) 3	1 (1.9%) 1	7 (4.5%) 7	4 (7.8%) 4	11 (5.3%) 11

*n (%), number and % of participants experiencing an AE; m, number of incidents of an AE

- Ecnoglutide 1.2, 1.8, and 2.4 mg once weekly resulted in robust weight reductions in adults with overweight and obesity
- Participants receiving ecnoglutide 2.4 mg had significantly greater weight reduction at Week 26 than those receiving once daily liraglutide (-14.7% vs -8.8%, P<0.001).
- Weight loss for 2.4 mg ecnoglutide at 26 weeks (-14.7%) was comparable to 2.4 mg semaglutide at Week 28 (~ -12%)³ and 15 mg tirzepatide at Week 24 ($\sim -14\%$)⁴
- The overall safety profile of ecnoglutide was similar to other GLP-1 based therapies.
- A Phase 3 study of ecnoglutide in patients with obesity has been initiated.
- 1. CDC. Health Effects of Overweight and Obesity, 2022.
- 2. Nadkarni et al. Prog Mol Biol Transl Sci 2014;121:23-65. 3. Wilding et al. N Engl J Med 2021;384:989-1002. 4. Jastreboff et al. N Engl J Med 2022;387:205-16.

Z. Zhu, Y. Li, Q. Zheng, E. Adegbite, S. Ross, L. Telusca, C. L. Jones, M. Fenaux, S. Xu, and M. K. Junaidi are employees of Sciwind Biosciences.

Treatment-emergent AEs with total incidence $\geq 5\%$ by

CONCLUSIONS

REFERENCES

FINANCIAL DISCLOSURES